UNIDADE B - LIMITES

Limites no Infinito

Observe o gráfico da função .

Note que quando x tende ao mais infitinto, os valores de y tendem a zero e quanto x tende ao menos infinito, os valores de y também tendem a zero.

Em símbolos podemos representar assim:

e

Estes limites são exemplos de limites no infinito, cuja definição formal apresentamos a seguir:

Definição 1: Seja f uma função definida em um intervalo aberto . Escrevemos quando o número L satisfaz à seguinte condição:. Significa dizer que a partir de um determinado valor A, positivo, a função se estabiliza em torno do valor L.

Definição 2: Seja f uma função definida em um intervalo aberto . Escrevemos quando o número L satisfaz à seguinte condição:. Significa dizer que a partir de um determinado valor B, negativo, a função se estabiliza em torno do valor L.

Operações com Limites Infinitos:

Supondo que sejam resultados de limites de funções, as seguintes situações podem ocorrer:

A seguir apresentamos dois teoremas que serão muito úteis na resolução de limites infinitos.

Teorema 1: Se n é número inteiro positivo, então são válidos:

Teorema 2: Sejam os polinômios então .

Ex. Calcule o seguinte limite, usando os dois teoremas:

Solução:

Usando o Teorema 1:

Colocam-se os termos de maior grau da variável em evidência, no numerador e no denominador.

Desta forma, os termos que estão dentro dos parênteses, com denominador na variável x, tendem a zero.

Usando o Teorema 2:

Basta usar os termos de maior grau da variável no numerador e no denominador, desprezando-se os demais.